Course: ENME 641

Title: Viscous Flow Location/Time: ENGR 1108 – Monday, Wednesday, 5:00-6:15 pm Online access: elms.umd.edu

Instructor:

Prof. Amir Riaz 3127 Martin Hall, 305-405-0707 Office Hours: Thursday, 2 - 4pm

Summary:

The course focuses on the study of fluid flow problems for which viscous effects play a major role. Examples of steady and unsteady flows and exact solutions to the Navier-Stokes equations will be discussed. Confined flows, porous media flows, lubrication and thin-film approximations will be discussed. Boundary layer theory will be presented along with the stability analysis of laminar flow and its transition to turbulence.

Topics:

- Exact solutions of Navier-Stokes Equations
- Asymptotic approximations
- Confined flows
- Boundary layers
- Flow stability

Suggested Reference Books:

Incompressible Flow, *R. L. Panton* Viscous Fluid Flow, *F. M. White*

Exams:

Midterm – In class Final – Project

Grading:

Homework:	50%
Midterm:	25%
Final:	25%

Course outline:

- Preliminaries
 - Conservation of Mass, momentum and energy
 - Specification of viscous stress tensor
 - Viscosity; measurement and calculation
 - o Constitutive laws for viscosity
- Vorticity generation and transport
- Solutions of Navier-Stokes Equations
 - Similarity solutions
 - Buoyancy dominated flow
 - o Compressible flow
 - o Stokes flow
 - Lubrication approximation
 - o Hele-Shaw cell
 - o Porous media flow
 - Thin-film approximation
 - Asymptotic approximations
- Stability of viscous flow
 - Perturbation techniques
 - Normal mode analysis
 - Orr-Sommerfeld equations
 - Stability of parallel viscous flows
 - Natural convection
 - Transition to turbulence
 - Nonlinear stability
- Laminar boundary layers
 - Similarity and exact solutions
 - Approximate solutions
 - Separated flows
 - Stability of boundary layers
 - Transition to turbulence